RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FOURTH SEMESTER EXAMINATION, MAY-JUNE 2013 SECOND YEAR

CHEMISTRY (Honours)

Time: 11 am - 1 pm Paper: IV Full Marks: 50

[Use separate Answer Books for each group]

Group - A

(Attempt one question from each unit)

Unit - I

- 1. a) Define 'specific conductance' of an electrolyte solution and mention its SI unit. The specific conductance of a given aqueous solution of KCl at 25°C is 'A' units. How will 'A' change if the solution is
 - i) heated to 50°C

Date : 20/5/2013

- ii) diluted to half its concentration
- iii) specific conductance is measured in another conductivity cell having a higher value of the cell constant.

Explain the basis of your answers.

[2+3]

[2]

- b) The equivalent conductance of an electrolyte is defined as $\Lambda = \frac{1000 \text{K}}{\text{C}}$ [where K and C are the specific conductance and concentration of the solution]
 - Does this imply Λ is inversely proportional to the concentration of the solution? Explain.
- c) An electrolyte MA dissociates as

$$MA \Longrightarrow M^+ + A^-$$

Given, C is the initial concentration of the electrolyte λ and λ_0 are the equivalent conductivity values of the electrolyte at concentrations C and infinite dilution respectively. α is the degree of dissociation of the electrolyte. Prove that $\alpha = \frac{\lambda^2 C}{\lambda_0(\lambda_0 - \lambda)}$. [3]

 $\lambda_0(\lambda_0-\lambda)$ d) Describe the construction and working of a glass electrode. Why is a glass electrode never used in

- solution whose pH≥12?

 2. a) The measured resistance of a conductivity cell containing 0·1(N) KCl solution is 3468·9 ohms at 25°C. An exactly 0·1(N) solution of another strong electrolyte in the same cell had a resistance of
- 4573.4 ohms. Calculate the equivalent conductance (Λ) of this electrolyte at the given concentration. [Given : specific conductance of 0.1(N) KCl = 12.856 mS.cm⁻¹]
 - b) The emf of the cell:

$$Cd \mid CdCl_2 (1m) \mid AgCl - Ag$$

is 0.675 volt at 25° C. The temperature coefficient of the cell e.m.f is -6.5×10^{-4} volt/degree. Find ΔH for the cell reaction when one Faraday of electricity is drawn from it. [3]

- c) Draw the conductometric titration curves in the case of
 - i) CH₃COONa(aq) versus HCl as titrant
 - ii) K₂Cr₂O₇ (aq) versus NaOH as titrant.

Explain the nature of the curves.

[2+2]

[3]

- d) i) What is the origin of liquid junction potential in a electrochemical cell when two different electrolyte solutions, directly come into contact of each other.
 - ii) How does one get rid of this?

[2+1]

Unit – II

- 3. a) Consider the problem of a particle in an infinite well with its walls located at -a and +a.
 - i) Verify that the wave functions given below would be solutions of the above problem

$$\psi_{n}(x) = \frac{1}{a^{\frac{1}{2}}} \sin \frac{n\pi x}{2a} \quad n \text{ even}$$
$$= \frac{1}{a^{\frac{1}{2}}} \cos \frac{n\pi x}{2a} \quad n \text{ odd}$$

- ii) Give the expression for energy in terms of a 'a' and 'm' $[m \rightarrow mass \text{ of the particle}]$
- iii) If the origin was placed at one end (so that the limits of length become O to L) which of the quantities: $\psi_n(X)$ or the energy, would change? Explain. [2+1-
- b) Find out whether the variables L_x (X component of angular momentum) and L_Z (Z-component of angular momentum) can be measured simultaneously with unlimited accuracy in a quantum mechanical system. [2]
- c) Show that if ϕ_1 and ϕ_2 are eigenstates of \hat{H}_1 and \hat{H}_2 with energies E_1 and E_2 respectively $(E_1 \neq E_2)$ then $\psi = \phi_1.\phi_2$ is an eigenstate of $\hat{H}(=\hat{H}_1 + \hat{H}_2)$. Find the eigenvalue. [2]
- d) Examine whether i(d/dx) is Hermitian. [2]
- e) Estimate the de Broglie wavelength (in Å) for an electron of mass 9.1×10^{-28} g moving with 10% of the speed of light. [2]
- 4. a) i) Prove that the integral $\int_{-\infty}^{+\infty} \psi^*(x,t) \psi(x,t) dx$ is independent of time

[$\psi(x,t)$: well behaved wave function of a Schrodinger Equation]

- ii) Explain why this condition is essential for the consistency of quantum formulation. [3+1]
- b) Prove that an eigenfunction of a a Hamiltonian operator will be either symmetric or antisymmetric w.r.t parity operator. [2]
- c) For a particle of mass 'm' confined in a **cubical** box of edge-length L find the degree of degeneracy of the level with $n_x + n_y + n_z = 4$. [2]
- d) If ψ_1 and ψ_2 are eigenfunctions for a degenerate state of energy E, prove that any linear combination of ψ_1 and ψ_2 is also an eigenfunction, of the same operator. [2]
- e) Prove that any two normalized wavefunctions ψ_m and ψ_n $(m \neq n)$ of a particle in a one-dimensional box are orthogonal to each other. [2]

Group - B

(Answer one question from each unit)

Unit - I

5. a) i) Predict the product and offer explanation:

 $\begin{array}{c|cccc} & Ph & Ph \\ \hline & OH & OH \\ \hline & NO_2 \\ \end{array}$

ii) Write the structures of [A] and [B] in the following reaction sequence: [2½]

 $[2\frac{1}{2}]$

$$R - C \stackrel{O}{\swarrow} \underbrace{NaN_3}_{Cl} [A] \xrightarrow{i) \Delta, ii) H_2O} [B]$$

Give the mechanism of formation of [B] from [A].

b) Give the product(s) with suitable mechanism in each of the following reactions: $[2\times3]$

i)
$$\stackrel{\text{H}}{\underset{\text{N}}{\bigvee}} \stackrel{\text{Me}}{\underset{\text{OH}}{\bigvee}} \stackrel{\text{Ph}}{\underset{\text{OH}}{\bigvee}} \stackrel{\text{1) PCl}_5}{\underset{\text{N}}{\bigvee}} \stackrel{\text{ii)}}{\underset{\text{Me}}{\bigvee}} \stackrel{\text{NO}_2}{\underset{\text{EtOH}}{\bigvee}} \stackrel{\text{KCN}}{\underset{\text{EtOH}}{\bigvee}}$$

iii) Me
$$\longrightarrow$$
 NHOH $\overset{\text{H}_3O^+}{\longrightarrow}$

c) Describe briefly how a dry ethereal solution of diazomethane is prepared in the laboratory from N-nitrosomethylurea. Give mechanism. [2+2]

Illustrate the use of diazomethane in achieving (i) methylation of phenol (ii) synthesis of pyrazole ring.

6. a) Predict the product(s) of the following reactions. Give mechanisms (any three): [2×3]

ii)
$$CMe_3$$

$$48\% HBr$$

$$iv) \quad \overbrace{\bigcirc{\bigcirc{\bigcirc{OCOPh}}}}^{OCOPh} \xrightarrow{anhydrous} \xrightarrow{AlCl_3, \Delta}$$

b) i) Explain mechanistically the difference in pattern of coupling of PhN₂ with (i) aniline (ii) N,N-dimethylaniline is slightly acidic solution. [3]

ii) Both
$$\stackrel{\text{Ph}}{\longrightarrow} \stackrel{\text{Cl}}{\bigcirc}$$
 and $\stackrel{\text{Cl}}{\longrightarrow} \stackrel{\text{Cl}}{\bigcirc}$ [3]

furnish same product when separately treated with NaOH. Explain.

c) Suggest chemical reactions to distinguish between the members of each of the following pairs: [1½×2]

i)
$$\sim$$
 NO₂ and \sim NO₂

$$\begin{array}{ccc} & ii) & \overbrace{\bigcirc & NH_2} & and & \overbrace{\bigcirc & NH_2} \\ \underline{\textbf{Unit}-\textbf{II}} & & & NH_2 \end{array}$$

[2+2]

[2+2]

[2]

7. a) Give retrosynthetic analysis and an efficient synthesis of the following compounds:

i)
$$\times_0^0$$

$$ii) \qquad \overset{O}{\underset{Ph}{\bigvee}} \overset{OH}{\underset{Ph}{\bigvee}}$$

b) Carry out the following conversions. Mechanism is not required

$$0 \longrightarrow Me \longrightarrow OEt \qquad 0 \longrightarrow Ph \longrightarrow Me$$

$$ii) \qquad Ph \longrightarrow OH \longrightarrow Ph \longrightarrow Me$$

c) Predict the product of the following reactions:

8. a) Carryout the retrosynthesis of the following to obtain easily available starting materials and also show the forward synthesis: CO₂H [2+2]

i)
$$Ph$$
 OH $C \equiv CH$

b) Outline the synthesis of the following compound (A) using organometallic reagent.

c) Carryout the following conversions. Mechanism is not required.

i) $M_{Br} \longrightarrow M_{O}$

[2]

[2+2]

多線の